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FOREWORD 

This report was prepared in the Applied Mathematics Research 

Branch of the Aeronautical Research Laboratory, Air Force Research 

Division, Air Research and Development Command, Wright-Patter son 

Air Force Base, Ohio.    The problem stems from a proposed electronic 

method for extracting information from very low-contrast photographs, 

through grain counts of the enlargements, and originated in the Solid 

State Physics Research Branch of the Aeronautical Research Labora- 

tory.    The authors gratefully acknowledge numerous discussions with 

Dr. Lee Devol and Mr. Radames Gebel on the basic physical question 

which has been presented in WADC TN 58-110, "Electronic Contrast 

Selector and Grain Spacing to Light Intensity Translator for Photo- 

graphic Enlargements ", by R. Gebel.    The work presented herein is an 

attempt at a suitable mathematical formulation as a basis for proper 

analysis of such grain counts.    The authors also acknowledge the assist- 

ance of Mrs.  Martha Elmore and Mr. James Caslin in the preparation 

of some of the tables and graphs.   Appendix III on computational procedures 

developed for formulas given in Section 7 (to be used with the Burroughs 

E-101 Electrodata Electronic Computer) was written by Mr. Caslin.    The 

work was carried out under Project 7071, Task 70437, "Methods of 

Mathematical Physics". 
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1 

ABSTRACT 

The accuracy of the evaluation of a photographic plate is limited 

by its grain structure.    One approximates the value for the light density 

at a given point by the average light density in a small area (the "test 

are") surrounding the point.    This paper establishes confidence limits 

for evaluation procedures of this kind.    It is assumed that the grains on 

the photographic plate arise in independent random processes controlled 

by the local density of the light flux.    In the evaluation procedure one 

counts the number of grains in the test area.    Generalizing the method 

one attaches a weight factor to each grain depending upon the grain 

position within the test area and then determines the sum of the weight 

factors for the grains found in the test area.    By such a procedure one 

can determine quantities related to the light density, e.g. the density  

gradient; one can also scan for patterns of a special kind, e. g. a sudden 

jump of the light density.    For measurements of this kind probability 

theory predicts the expected value and the variance in terms of the light 

density and the chosen weight function.    There are two kinds of errors 

in the measurement process:   errors due to the non-vanishing size of 

the test area, and errors due to the randomness inherent in the process 

of grain generation.    The variance due to errors of both kinds must be 

minimized.    The treatment of these questions is shown in a number of 

examples of increasing complexity.    Moreover, this report investigates 

in 

■ 



the probability of making an error if one tries to discriminate between 

two known light densities on the basis of grain counts, and it also examinei 

a step-wise method for carrying out such counts. 

IV 



TABLE OF CONTENTS 

Section 

Introduction 

1. Model Connecting the Grains of the Photographic Plate With 

the Light Flux 

2. Some Results of Probability Theory 

3. Examples 

4. More General Distribution of p 

5. Scanning for Special Patterns 

6. Recognition of Darker Spots Against a Uniform Background 

7. A Comparison of Two Techniques of Assigning a Light 

Density to a Single Area of Lesser Intensity than the 

Surroundings 

8. Assigning a Light Density to a Single Area when Its 

Surroundings Contain Both Lesser and Greater Intensities 

Conclusion 

Appendix I      Derivation of Formulas for My And V 

Appendix II    Comparison of Poisson Distribution and Normal 

Distribution 

Appendix III   Computational Procedures for Formulas Given in 

Section 7. 

Page 

3 

4 

9 

21 

26 

27 

^9- 

51 

58 

60 

68 

76 



LIST OF ILLUSTRATIONS 

i 

Figure 

1. Probability Density Curve 82 

2. Scanning for a Given Pattern 82 

3. Graph of 6 as a Function of  y. 83 

4. Graph of Probability of Error as a Function of N 

for 0 = 0. 1 ,   Y- =1. 1 

for ß=0. 5 ,   Yj^l. 1 

6. Graph of Probability of Error as a Function of N 

for 0=0. 9 ,   y. =1. 1 

7. Graph of Probability of Error as a Function of N 

for 

vi 

Page 

84 

85 

86 

87 for 0 = 0. 1 ,    y   = 1. 5 

8. Graph of Probability of Error as a Function of N 

for 0 =0.5 ,    Yi = 1'5 88 

9. Graph of Probability of Error as a Function of N 

for 0=0.9 ,   YjSl.5 89 

10. Graph of Probability of Error as a Function of N 

for 0 = 0. 1 ,    Y, =2-0 90 

11. Graph of Probability of Error as a Function of N. 

0 = 0.5,    Yj32-0 91 

i 

5.      Graph of Probability of Error as a Function of N. 



■ 

LIST OF ILLUSTRATIONS (Continued) 

Z*8£. 
Figure 

12. Graph of Probability of Error as a Function N 92 

for 0 = 0.9 .   Yj=2.0 92 

13. Minimum Expected Number of Grains Required 

in Test Area to Satisfy P =. 05 for X. j > 1 93 

14. Lower 95% Confidence Limit for N.^Yi5* *) 94 

15. Minimum Expected Number of Grains Required in 

Test Area to Satisfy P= .05, Q = .05 for y  ^ 1 

16. 95% Confidence Intervals for N    (y   f 1 ) 

17. Subdivision of the Area y 

18. Normal Approximation to the Poisson Distribution 

for N=10 98 

19. Normal Approximation to the Poisson Distribution 

for N = 20 99 

20. Normal Approximation to the Poisson Distribution 

for N = 30 100 

21. Normal Approximation to the Poisson Distribution 

for N = 40 101 

22. Normal Approximation to the Poisson Distribution 

for N = 50 102 

2 3.      Normal Approximation to the Poisson Distribution 

for N = 60 103 

vu 

95 

96 

97 ; 

■ 

. 



LIST OF TABLES ___—^——_ 

Table I Values of P and P   for the case when r' = r s 

Page 

(Yl>D 70 

Table 11(a)    Values of r for YJ>1 71 

Table 11(b)   Values of r« for Yl>l 71 

Table III       Values of Q and Q    for v. > 1 72 
8 1 

Table IV(a) Values of ^ and r£ for Y ^1 73 

Table IV(b) Values of r^ and r£ for y^l 73 

Table V        Values of Q and Q    for v. ?l 74 
s x 

Vlll 



INTRODUCTION 

In order to gain maximum information from a photograph one may 

enlarge it to the extent that the individual grains show up.    The density 

of the grains is proportional to the flux of light hitting a particular area. 

The grains of the photographic plate arise by a random process; there- 

fore, the statistical variations in the density of them set a limit to the 

evaluation.    The interpretation of the photograph will then amount to 

somehow forming average densities; also one may try to recognize 

patterns or some main features of the picture.    This process is usally 

done by inspection, perhaps with some additional photographic techniques, 

such as high contrast prints.    The question can be asked whether this 

process can be done by a photoelectric scanning process.    This may be 

desirable for several reasons.    The photoelectric processes might reveal 

information which is hard to recognize with the eye.    Whether this is 

true dej. nds upon the performance of the eye, and this question does not 

concern us in this report.    The photoelectric evaluation would not require 

human judgment, and thus it is not subject to fatigue and also it can be 

done more quickly.    It is felt that the second point is sufficiently important 

to justify a closer study of this possibility. 

We ask in this report which conclusion about the energy density of the 

electromagnetic waves can be drawn from the distribution of grains on 

given photographic plates.    Local measurements are impossible because 

of the grain structure of the plate, therefore one will try to characterize 



  

the desired light density at a given point by an average - possibly a 

weighted average - of the grain density over an area surrounding this 

point.   This paper treats this process from a probabilistic point of 

view.   Confidence limits are established for different measuring pro- 

cedures and it is shown how to choose a weight factor characterizing 

the measurements in such a manner that the error limits are minimized. 

By a suitable choice of the weight factor it is possible to determine, 

beside the light density.other quantities related to it, e. g. its gradient. 

Furthermore.it is possible to search for special patterns, e. g. for a 

jump of the light density, or for narrow lines of a higher density. 

From a technical point of view the question of discriminating between 

two fixed light densities may be of interest.   Here one will define a certain 

cut-off count for the number of grains, and ascribe to all areas with a 

count below the cut-off the lower light density, to all others the higher 

one.    For this procedure, formulae for the probability of error are giver. 

From a practical point of view, one might be inclined to determine 

first for subareas of the test area, whether they belong to the higher or 

to the lower light density.    The majority of assignment of one kind or the 

other in the test area will then determine, whether the test area belongs 

to the higher or to the lower count.    The probability of error for this 

procedure and for a direct count for the entire test area is also investi- 

gated. 



1.   Model Connecting the Grains of the Photographic Plate With the 

Light Flux 

For our theoretical analysis we need a model for the interaction 

of light with the photographic plate.    The light manifests itself in 

photons, i.e. at discrete points of the photographic plate.    Not every 

photon gives a chemical reaction on the plate; a major portion of the 

light passes through without indication.    But some photons modify 

certain molecules.    The grains which we see are clusters of changed 

molecules which grow because of the development process around the 

molecules of the photographic emulsion that have been changed by 

the photons.    The subsequent computations are based on the follow- 

ing model for the creation of grains:   For a first example assume 

the energy density of the light waves to be constant.    Let us assume 

that we can stretch the time scale in such a manner that one grain 

arises after the other.    Then the grain arising first will be found at 

some spot of the plate and all locations are equally probable.    The 

probability of finding a grain in a given area is equal to this area 

divided by the area of the whole plate.    The second grain arises in 

exactly the same manner and its location is not influenced by the 

location of the first grain.    The sa-ne holds for all grains that arise 

subsequently.    One says that the arising of grains represent inde- 

pendent events. 

If the light density varies across the plate, then the probability 

of finding the first grain in a given area is equal to the integral of 



m*>"'   ■ ■'■   

the light flux for the area considered, divided by the integral for 

the light flux over the whole plate.   Again the production of any 

one grain is assumed to be independent of the production of all 

other grains.   Furthermore it is assumed that all grains have the 

same darkness and can be considered as points, i. e. if one counts 

grains in a given area, a grain is either inside or outside of that 

area. 

2.   Some Results of Probability Theory 

For our future discussion some results of probability theory 

will be needed.    They are derived in Appendix I.    Here they will 

be quoted and described in a self-contained manner. 

The number of photons that act on the photographic plate and the 

number of grains produced are considered as very large.    For the 

measurement, a small area called "test area" of the photographic 

plate is considered and from the number and the arrangement of 

the grains certain conclusions on the density of the incoming light 

are drawn. 

Let us introduce on the phographic plate a Cartesian system of 

coordinates.    The probability that a grain is produced in a certain 

area is considered to be proportional to the light flux across the 

area multiplied by the exposure time.    Let the density of the light 

flux (the energy of the electromagnetic waves per unit area) be 

given by   p(x, y).    If one makes a great number of photographs of 

the same object and counts in al] photographs the number of grains 
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in the same test area A, then the counts will in general not be the 

same.   Let N be the conceptual average formed from an infinitely great 

number of such counts.   (The number N is also denoted as " expected 

value").   A factor of proportionality which contains the exposure time 

and the sensitivity of the plate may be denoted by k such that 

N = k // p (x, y) dxdy 
A 

(1) 

is the average number of grains to be expected in A. 

Let 8(x, y) be a weighting function.    The choice of this weight- 

ing function determines the measurement that is carried out.    The 

individual grains found in the test area in a specific experiment may 

be numbered as 1,2,  ... i ... n (n will be close to N but need not be 

equal to N); the coordinates of the individual grains are (x , y ) ... 

(x., y.) ...    The function 6 (x, y) then yields the weight 8 (x., y.) for 

grain i in the position (x.,y.).    A measurement then determines the 

expression 

■ 

Y=Z8(x.,y.) (2) 

where the summation is to be extended over all points that lie in the 

test area.    For a fixed area A and a given photographic plate,  Y will 

have a fixed value.   If one evaluates a great number of plates which 

have arisen from the same experiment, i. e. from the same function 

p(x,y) with the same constant k,  one will obtain different values of 



Y.   Let p(u) be the probability density of Y taking on values u.   Fig. 1 

•hows such a probability density curve.   The area under the curve is 

the probability of finding a test result between u = -•» and u = + *.   This 

probability is  1.   The average value of Y is defined by 

My =  /   u p(u) du (3) 

In our measurements the quantity that is to be determined will be 

approximately proportional to the average value; but naturally, indi- 

vidual measurements will give results that are scattered around the 

average value.   To characterize the width of the scatter one introduces 

the variance which is defined by 

+a° .2 
VY =   /(u-My)   p(u)du (4) 

To show how the variance is connected with the width of the curve, 

let us first assume that the probability is constant over values Y 

which deviate from the average by at most b.    (In other words b is the 

half width of a rectangular distribution).    Then the probability density 

is  1 /2b and one obtains for the variance 

VÄi(u-MY)2d,u-MY'=-r- 
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i. e.  in this case 

b=T ^ 

where        T = *JT~ 

(5) 

Frequently, e. g. if the number of points in the test area is large, 

the distribution will be close to normal, as can be shown by means of 

the Central Limit Theorem (see [1] page 180). Then, since the distri- 

bution extends to infinity,  b can no longer be defined as the half width 

of the area which contains all the points.   It is then considered as the 

half width of an area that contains a fraction (1 - a) of all points.   We 

can use (5) again; r is given as a function of a in the following table 

a 1 - o T 

.317 .683 1 

.045 .955 2 

.003 .997 3 

.100 .900 1.64 

.050 .950 1.96 

.010 .990 2.58 

The value of T which we obtained previously for a rectangular 

distribution then corresponds to an a of about 0. 1, i. e. 90% of the 

measurements will fall within the region 

M^fc 1.6N/VV 



It is not impossible to determine the probability density curves 

for the experiments to be described in this report.    They may be 

obtained from the characteristic functions given in Appendix I.   Here 

we mention only two results.    The average value of infinitely many 

measurements (i.e. for an identical test area in infinitely many photo- 

graphic plates) is given by 

KC =k// p(x,y)e(x,y)dxdy 
A 

(6) 

The variance is given by 

VY = k//p(x,y)9   (x.y)dxdy 
A 

(7) 

In making measurements one will define 9 in such a manner, 

that the average value  M     is directly related to the quantity which 

one wants to find.    Then one can compute from (7) the variance 

incurred in such   a measurement and determine from it probable 

bounds for the errors which may arise, if one uses Y as an approxi- 

mation for  M   .    Examples will be given in the next section. 

Later another result of probability theory will be needed.    The 

quantity as defined by the right hand side of (6) is in general only an 

approximation to the quantity which is to be determined.   One reason 

is, that the form of (6) is an average over an area, while we are 

frequently interested in local values.    To fix the ideas take the local 
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value of  p (x, y).   This local value of p must be approximated by an 

integral M     over an area.   In general this average M_. will not be 

equal to the value of p at the desired point.   The difference depends 

upon the character of the functions p and  0, and it will vary with 

x and y; basically it depends upon the properties of the photograph. 

Thus the quantity M    - even if suitably defined - is only an approxi- 

mation to p and the difference M    - p possesses a variance, which 

we shall denote by V   .   In estimating M     by counting the number of 

grains within the area and calculating Y another error is incurred 

which has a variance V   .   Now probability theory gives the following 

result:   If the two probabilistic processes are independent then the 

result will have a variance given by the sum of the two variances. 

3.   Examples 

Some examples may show how these results are applied to 

specific situations,    (a)   Let us assume that p is constant (but unknown) 

and that we want to determine its value.    Taking a rectangular test area 

with sides 2a and 2b one finds 

+a+b 
MY =kp/   / 9(x,y)dxdy 

-a-b 

M. 

a  b 
k / /  e(x,y)dxdy 
-a-b 



The last equation shows the relation between the desired value p 

and the average value M   .    p is proportional to M     and the factor of 

proportionality is known.    The variance is given by 

+a +b    2 

Vv = kp    /    /  6    (x.y)dxdy 
Y -a -b 

In these formulae 6 is still arbitrary.    Let 

9 = 1 

then M    = kp4ab 

M     is then the average number of points N in the area.    The variance 

is 

V    = kP4ab = M    = N 

Using Eq.  (5) for the width of the probability curve one finds as 

measure for the relative error 

€= .L   =  _L_ (8) 

Here T  must be taken from the table given in Section 2.   If a = . 003 

and N = 10, 000 one would obtain a relative error in the order of 3%; 

for  N= 100 one would obtain 30% relative error.    For  a~. 10 the 

relative error with 1000 points is 5.2%.    This may be considered as 
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tolerable.   About 1000 points in tbe test area appears to be the minimum 

that should be used. 

One might try to reduce the variance by choosing another function 6. 

Unfortunately 6 = constant is the best choice.   Let us pose the problem 

of minimizing the variance while the average value M     is kept constant: 

// 8(x, y) dxdy = constant 
A 

// 6 6{2 9(x,y)+ X. }dxdy = 0 
A 

or 

9 = -   —   = constant 

In computing the relative error the choice of the constant in the 

i 
2 

J / 0   (x, y) dxdy = minimum 

This is a simple problem of the calculus of variations.    Introducing 

a Lagrangian multiplier \ cne obtains an equivalent problem: 

Hence 

// {9   (x,y)+ \9(x,y)} dxdy = minimum 
A 

11 



last equation is unessential.   We set 0 = 1, and thus find that the above 

choice of 6 was optimal, 

(b)  Let 

P = P0[l*a1f+b1J]; (9) 

we try to determine  p at x = 0, y = 0.    Choosing 9 = 1 we obtain 

My =kP()4ab 

Thus M     is proportional to p. at the origin, which shows that 

this choice of 9 is suitable for the desired measurement.    The 

variance is found to be 

+a+b 
V

Y = kp0_/ _{<!+*! f +b1I)dxdy 

= 4kpQab 

Again these quantities can be expressed by means of the average 

number of points N in the test area, and one obtains the same result 

for the relative error as in (8.) 

Let us again consider the minimum problem for 6 .    The function 

9 (x, y) must be chosen such that only the constant term in the above 

expression for  p will give a contribution to M    .    Let 

12 



pj(x.y) = i 

P2(x,y) = x/a 

P3(x.y) * y/b 

Then we must determine 0 (x,y) in such a manner that 

+a +b 
/    / 9(x,y)p   (x.y)dxdy   =   1 

-a -b 
(10a) 

+?+y 9(x, y) p    (x, y) dxdy   =   0 
■a -b * 

(10b) 

+a  +b 
J   / 9(x,y) p3 (x,y) dxdy =   0 (10c) 

+a +b 
/   / ( pl + ax p2 + bj p3)9 (x, y)dxdy= minimum   (lOd) 

•a -b 

By variational calculus one obtains 

e(x,y) = Spl+ K2P2*Sp3 

Pl + aip2+blp3 

where \^ , \2 and \    must be determined from conditions (10a, b, c). 

By chance this problem possesses a simple solution.    If we set 
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h-1 

h°*i 

X.   = b 
*3      1 

one finds 8=1,    The conditions (10b) and (10c) are automatically 

fulfilled.    The condition (10a) is unessential, it could be fulfilled by 

choosing a suitable constant for  6, instead of 6 = 1.    But such a 

constant would drop out in the determination of the relative accuracy c • 

Thus we find, that even for a p  surface that possesses a gradient, 

8 = 1  is the best choice for the weight function. 

(c)   Going one step further one might consider a function p which 

is represented in a certain area by 

2 * 2 
p= p0 ( 1+ajX + a2y + a3x    + a4xy + a5y) 

To obtain sumple results we assume that p  is nearly constant.    Then 

by calculus of variations one finds 

2 2 
9 ~\   +\   x +\   y + \.x    + Xgxy +X.,y 
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with the additional conditions 

//edxdy = l (11a) 
A 

//8x   dxdy = 0 (lid) 
A 

//9xdxdy = 0 (lib) 
A 

//9ydxdy = 0        (lie) 
A 

/ / 8xy dxdy = 0 

//9y   dxdy = 0 

(He) 

(Hf) 

For reasons of symmetry one finds from (lib) \^ = ®> from 

(lie)   \.3=0, from (lie) X _= 0.    If we consider a region A  which 

does not change if the x and y axis are interchanged,  one further- 

more finds X 4 = X ,  .    Let  X . s 1.    We now have 

9 = 1 + X, ( x2 + y2 ) 

with the additional conditions 

//9x   dxdy = 0 
A 

or 

/ / 9 y   dxdy = 0 
A 

/ / 9 ( x   + y   ) dxdy = 9 

15 



If we consider a circular region of radius 1,* then this con- 

dition will give 

/( l + \,r2)r3dr = 0 
0 6 

X,= -3/2 

Thus 

e=l-yr 

With this value one obtains for the average measurement 

My =2irkp0 / ( 1 - - r   ) rdr =  ^   irkpQ 

The variance is 

1 3     2* 1 
Vy = 2Trkp0 /  ( 1 - -   r  )    rdr = - irkP() 

The number of points in the region is N = irkp 

Thus the average of the measured quantity is N/4 

and the variance is N/4 

The relative error is 

2T 

♦Since the scale of the  x and y coordinates should be unessential,  it 

can always be chosen in such a manner,  that at the boundaries x= 1,  or 

y = 1, or  r = 1 (whichever is convenient). 
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If one would have omitted the conditions that the result has to 

2 2 
be sensitive against contributions of x    and y    in p then the 

relative error would have been 1/2 of this amount, viz 

€= w 
For comparison the same computation may be carried out for 

a square region. 

2      ?. 
9=l+\,(x   +y   ) 

o 

X., is determined from the condition 6 

/ / 9 x2 dxdy = 0 

Thus 

// [x2+\,(x4 + x2y2)]dxdy = 0 
A 6 

\   -     11 6       i4 

Thus 

9=1-   J±   (x   +y ) 

11 11 
M    =4kp   //6dxdy = 4kp J/[l-   ~(x   +y)]dxdy=|kp 

0 0 0 0 ** U 

The number of points in this region is 4kpn =N 
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Thus 

MY=  jN 

The variance is found to be 

11 2 
VY = 4kpQ //[l-  yfu   +y )]dxdy= f kpQ = M. 

Here the relative error is given by 

^/3^5T 

i. e. for the square the relative error is somewhat smaller than for 

a circle if the same number of points is used. 

The limitations of this procedure are quite obvious.    While in 

principle it is possible to exclude by constraints the influence of 

additional terms in a development for  p each constraint may make 

the function 6 more eneven and thus increase the variance.    We 

shall take up this question later. 

To show another variation of this technique let us try to determine 

a procedure for finding the first derivative of a given function in the x 

direction. 

Given 

P = P0( l + alX + a2y) (12) 
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Assume again that a    and a    are small, so that p~ pQ. Then 

an optimal expression 6 has the form 

9= X.+X.x + X.y 

subject to the conditions 

/ /8 x dxdy 
A 

/ / 9 dxdy 
A 

=  1 

= 0 

/ / 9 y dxdy 
A 

= 9 

The second condition gives immediately X = 0, the third one 

X_= 9. Let the test area be a square of side 2a. The first con- 

dition yields 

9= -Z-T-  x 
4 a4 

(13) 

One then finds 

+a+a 
My= / / 9(x)p(x)dxdy=a1kp() 

-a -a 

Let N' = kp    be the expected number of points per unit of area 

(cf. (1)).    Then 

My = ajN« 
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Hence 

M 
a. = —- (14) 

1       Ni 

The variance is 

+a+a   , 3   kp0       3   N' 
VY= / /e  (x.y)p(x.y)dxdy =  f — =   4 "4 

-a -a a a 
(15) 

According to the remarks in Section 2 the half width of a region 

which contains a fraction  1 - a of all measurements is T"JV„ . 
Y 

The uncertainty in the measured values of Y can be expressed 

as an uncertainty in the values of a   ,    If the measurement Y 

deviates from M     by WV"V then one obtains from (14) as devi- 

ation in a 

**i T.J3 Aa. = 
1 N' za2^' 

For  a = 0. 1 (cf. Section 2) one finds T = 1. 6 and 

Aa=-^i- (16) 
1      2aZN/NT 

For a= 1 the average number of points in the test area is 4N1. 

Assume 41,"   = 900.    Then 

A a    a 0.092 
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The significance of a,  can be seen from Eq (12).   The uncertainty 

in a    just found is rather large.   Eq (16) shows how the size of the 

test area will influence the accuracy. 

4.   More general distribution of p 

In previous considerations we assumed a certain form of the 

functions and then determined the accuracy with which the value at 

a given point could be obtained.   The result was invariably that the 

region whould be taken as large as possible.   A limit arises naturally 

by the fact that the analytic expressions for p used here will repre- 

sent the actual p (x, y) in a limited region only.   For functions p as 

they occur in practice the expressions 

M    = //e(x.y)p(x.y)dxdy 
A 

are only approximations of the desired quantities  p or grad p. 

To extend the techniques used so far to more and more complex 

analytical expressions for p would be rather useless, for with this 

process the variance will increase.    Therefore we must accept the 

fact that the average values M     which we determine are only 

approximations of the desired quantities. 

In the following discussions we shall use for the determination 

of p at a given point an approximation which is based on the assump- 

tion that in the area considered p is a linear function of x and y. 

Correspondingly 8=1.    The value p in the center of the area is then 
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approximately proportional to 

+a+a 
My = / / p(x,y)dxdy 

-a-a 

where the origin of the xy - system lies at the center of the region 

considered. 

On a given photograph there exist lines of constant p .    Let us 

consider along one of these lines,  say p = p., a great number of 

equidistant points.    These points may be numbered as  1,2 ... j ... 

their coordinates will be (x., y. ) ... (x., y.) ...  .    We then obtain 
J J 

for the value M  for point j 

y,+a y.+a 
J J 

M   = /   /  p(x,y)dxdy 
J y.-a y.-a 

J    J 

Since the value of M     will vary from point to point (although all 

points j lie on a line p = constant), one may regard M     itself as a 

r.xndom function.    For this random function there exists a probability 

distribution, which gives the probability density for M     to take on 

given values.    For our measurements these values My would be 

interpreted as proportional to p-.    Obviously this probability distri- 

bution and its variance is determined by the character of the object. 

Intuitively it is clear that for an object for which p varies only slowly, 

M     has a smaller variance than for an object with rather abrupt 

changes.    In general the values of this variance must be estimated. 
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But it may be of some interest to see how this variance can be 

determined in principle. 

Assume for this purpose that for the vicinity of the point 

( x., y.) described above, p is actually of the form 
J J 

2 2 
P = P0[l+a,     (x-x ) + a      (y-y )+a      (x-x )   +a    .(y-y.) ] 

The deviation of M     . from the value p. is easily computed as 

4 4 
M«   • - P«=   T   P«(a, + a^)a Y,j     K0       3   K(T   3     4' 

The quantity a   +a    can be considered as a random variable 

which takes on the values a,   . + a.   . for the points considered and 
3.J       4,j 

possesses a variance  V. . .    We assume that the average of the (a3+a4) 

random variable a, + a.  is 3       4 

V+aJ=   /(a3+a4)p(a3+a4)d(a3+a4) = 0 
3       4      -«J 

The variance 

V + aJ=    / (a3 + a/p (a3 + a4) d (a3 + a4) 
3       4        -oo 

is considered as known. 

23 



The variance of M     about the correct value p. is then given 

by 

V(My)  = /p0
2U3+a4)2   i- a8   p(a3+a4)d(a3+a4) 

hence 

V(M ) =  i|  a8 p 2 V, 
y       9        Ko    <a3 + a

4) 

The value of this calculation lies in the fact that it shows how 

V(M )   can be computed and how it depends upon " a " and other 

known quantities.    Naturally for other assumed representations of 

p ,   a similar computation can be carried out. 

V(M   ) is the variance of the average measurement M     from 

the light density p. .    For each value  p. of the light density occur- 

ing in a given picture the variance  V(M   ) can be determined. 

2 
Since   4p   a    is the number of points N in the region considered, 

the last result can also be written as 

TJ2 4 

V(M   )=   -   a      V VUV 9 (a3+ a4) 

The variance which occurs in the measurement of p   has been 

shown in Section 3, Example a, to be N.    According to the theorem 

quoted at the end of Section 2 the two variances must be added.    Thus 
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the total variance of the measurement of Y about p. is 

N+  N a      V 
9 (a3 + a 

The measure for the relative error is then 

T|/W+  ^Y €= W 9 (a3ta4) 
N 

2 
Since N = 4p- a  , one has 

4Pna 

To obtain best conditions this quantity must be minimized, 

i. e.  one must determine the minimum of 

%   +  Ü   V a4 

IF       9       <W 

Hence 

9 1/6 

a = { 1 ) (18) 
8V/       .       x (a3 + a4)P() 

This equation defines the best size of the region.    One will 

notice that this result depends upon the value of pQ; therefore, 
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"a."  must be expected to vary with p .    Among the values of "a" 

so obtained from one photograph one must choose a suitable value. 

Since V. .is in general not known, this discussion is 
(a3 + a4} 

somewhat academic, but it shows how the size of the test region 

is connected to the character of the photograph. 

No essential changes would occur if instead of (12) a different 

form of p would be assumed, e. g. 

P = P0<1 + aix + a2
y + a3 lxl + a4 M > 

5.    Scanning for Special Patterns 

The examples up to now were concerned with the determination 

of  p and of grad p.   It may occur that certain special patterns of 

th<; light distribution are of importance and one might try to detect 

them.    These patterns might be of such a nature that they would be 

averaged out if one simply determines  p and tries to recognize 

them afterwards.    An extreme example may be diffraction rings in 

a telescope due to the finiteness of the aperture.    They may be rather 

completely hidden in the background light.    More practical examples 

are sharp lines like streets or rivers which are so narrow that they 

become rather indistinct.    Also the question may arise whether along 

a certain line the density jumps, or whether there is a gradient.   Such 

cases are covered by our previous investigations.    If the function p. 
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describes the pattern which is to be recognized, and p. and p 

are functions which should be suppressed, and if p is nearly 

constant, then the function   6(x, y) has the form 

e=x1p1+x2p2+x3p3 

and the X's are to be determined from the conditions that the 

influence of p. and p. must be suppressed. 

Assume e.g. that p    is the distribution due to the Newton ring, 

and that p    = 1 is the background light. 

Let 

p = P0(l + aiPl) 

then one has    9 = p    -I-  X. p 

and from  //0p, dxdy = 0 
A        L 

one obtains, setting p   = 1 

K "m A // pi dxdy A A      X 

i.e.  8 is equal to p    minus a constant which makes the average of 

9 over A  zero. 

The average of the measurements is then 

My =kpQai //(Pl +  \p2) Pl  dxdy (19) 
A 
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The variance of the measurement is 

Vv =kp0//(Pl+  \p2)2dxdy (20) 
A 

To get a feel for the orders of magnitude let us assume that 

the area considered is A,   and that the function p.   is  1   in the 

area y0 A and is zero in the rest of the region, where yn is a 

constant between 0 and 1 (See Fig 2.)       Further, for simplicity, 

let a    be small.    Then 

// p    dxdy =   y    A 
A     1 

and 

e = P!-Y0P2 

The average measurement will give 

My = kp   aj   //(p1-Y0P2)p1dxdy 
A 

=kp0
ai AV1_V = Nai^o(1'V 

Let N' = Nyn be the number of points in the area where   p   ^ 0. 

Then     My = a^l- YQ) N« 
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The variance is 

VY=kp0v0(l-v0)=NY()(l-v0)=N'<l-Y0> 

We proceed by analogy to the treatment of the density gradient. 

The half width of a region in which a fraction (1 - a ) of all measure- 

ments Y are contained is given by T 'JVy * 

One may ask for which value of a    the half width equals the 

expected value M    ; one finds 

1       ^l-y0*JN' 
(21) 

The aim should be to make this value small.    One limited possi- 

bility is the choice of v. .   However, if we keep N' fixed and 

choose yn small, then we increase the total test area, while the 

area belonging to the pattern is the same.    In this process we 

would encounter additional errors due to the nonuniformity of the 

background field.   A value of y. =   1/2 appears reasonable.    Using 

T =  1.6 (corresponding to a = 0. 1) one obtains 

1.6 a. = 
1      ^Tfl  *lfP 

For a    = 0  1, i. e. for a pattern which is 10% darker than the 
2 

background, the pattern must contain N1 =   2iii5L   =512 points to 
al 
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meet this condition. 

This approach applies to patterns of any kind.    One might,  e. g. 

try to recognize a straight line of points arranged over a certain 

width.   In this case one would consider a test area of about twice 

the expected width extending in the direction of the expected straight 

line.    (This description shows that, for the purpose, the testing will 

be done with a rather narrow rectangular test area, which must 

eventually be rotated if one tries to scan for straight lines of differ- 

ent direction.)   Eq (21) applies immediately and allows us to determine 

the limit where a pattern can still be recognized. 

One may ask, what will happen if one tests for a pattern which 

differs from the pattern which occurs in the picture.    Let us assume 

that the line where the darkness occurs has actually one half the width 

of what we expect it to have and that its density is twice what we 

expect it to have,  i. e.  that the value a    is now twice the value of the 

previous case.    Then since the number of grains in A  and in the 

pattern is the same as before, one obtains from the calculations the 

same value a    as before.    In reality a    is twice this calculated value. 

The variance has the same value as before.    Furthermore, if the 

proper width had been used,  then N1  would be one-half of the original 

value and the true value of a    now is sfz times the calculated value 

of a  .    This shows that the scanning should be adapted to the pattern 

as well as possible, 
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A step in   p in the x direction may be described by 

p    = -1 for x<0 

p    = +1 for x >0 

To scan for such a step one must choose a function 6 which will 

not register a constant background density, or a density gradient, 

or a step in the  y direction. 

Let 

P2=   1 

P3  =   x 

p4 = y 

p     =  -1 for  y<0 

p_  = +1 for  y>0 
5 

Then one has 

e= Pi +V2+V3 
+V4

+VB 

with the additional conditions 

//  0 p    dxdy ^ 0 (22a) 
A i 
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// e p. dxdy = 0 ,    i = 2,3...5 (22b) 
A 

These are 4 conditions determining   K_... \_  .   All \'s except 
CO 

X.   turn out to be zero.    This is seen if one assumes 8   to have the 

form 

6 = Pj +\ p3 (23) 

Since p,   and p. are odd functions of x while p., p. and p. 
13 24 5 

are even functions of x, it is immediately obvious that condition 

(22b), is fulfilled by (23). 

For an interval -a< x < a , one obtains from (22c) 

+ a 
/ 9 x dx = 0 

-a 

and hence 

2      a 

In determining the mean value we can omit all contributions to 

P   which is due to p. ...  p,. .    Let 

P = PQ ( l + al Pl) 

The average measurement is 

+ab 3   x 
My    = kalP(J //    P^Pj- J   I ) dxdy 

-a-b 
a, N 

= ka v      al* 
lPQ ab=  ~T 
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In determining the variance it is assumed that p is nearly constant; 

actually this assumption is not needed with the present choice of p_ . 

One obtains, 

ab 2 
VY = 2kP0  / / ( 1 -    I   I )    dxdy 

Y 0-b L   a 

N 
=   4 

The discussion carried out in conjunction with (21) applies 

again.    In order to obtain the same limit where a pattern can still 

be recognized, the number N in the present case must be 4(1- y.) 

times as large as before. 

Quite obviously, if the step in the photograph occurs at a 

position different from x = 0 and we test for a step at x = 0, we 

shall obtain a result which indicates the presence of a step.    The 

same applies if the step does not extend parallet to the y-axis, but 

is inclined to it.    In principle, it might be feasible to add conditions 

which would guard against misinterpretations of this kind, but 

because of the large number of grains required, the practical value 

of such a method is doubtful.    One would probably make the test 

indicated here for different locations of the jump and for different 

directions of it and then place the jump in the position where the 

indication is maximum. 

6.    Recognition of Darker Spots Against a Uniform Background 

The previous section dealt with the problem of measuring certain 
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defined quantities and of determining confidence limits for these 

measurements.    In this section we treat a case    where we know 

that the light density can assume two values, that of the background 

and that of the signal which raises the light density slightly above 

the background.    We want to discriminate between areas of this 

background light density and of the higher light density. 

To be specific, let us assume that the plate is divided into a 

rather large number of areas of equal size (e. g.   squares) and 

that these squares have been exposed to the background light or to 

the background light plus the light of the signal.    In a fraction    ß 

of all squares we have the background light and corresponding to it 

a value N    as expected number of grains; in the remaining fraction 

(1 - ß) we have background plus signal and correspondingly an 

expected number of grains   N   .    For convenience of discussion,  if 

an area has an expected number of grains equal to N  ,  we shall say 

it "belongs to N  ".    Let N. < N    .    The regions corresponding to 

the signal (N  ) are to be found.    For   this purpose we count the 

number of grains in each area and consider the areas below a certain 

cut off count m as belonging to N  ,  all areas above the cut off count 

as belonging to N   . 

m  should be chosen in such a manner that the probable number 

of wrong decisions is minimized.    (This formulation is not the only 

possible one,  one might e. g.  count an error committed by missing a 
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dark spot more heavily than an error where a light spot is considered 

as dark.) 

The probability of finding n grains in an area which belongs to 

an expected value N    is given by a Poisson distribution.    Therefore, 

if m is the cutoff count, the probability of misjudging areas belonging 

to N    as areas belonging to N    is given by 

■Ni; Nj P e     * S _i 
m n! 

The probability of misjudging areas belonging to N    as areas belong- 

ing to N    is 

_N_  m-1 N? 
(l-ß)e   ™2    S   __i 

—    n! 

Thus the probability of making an error is 

p   =ß e     l   S      ll1  + (1-P)  e     *    2      N2 (24) 
m     n! -     -^ 

To find a condition for  m, we increase and decease the cutoff count 

m by one; in either case the error probability must rise.    In the first 

case the error probability chahges by 

-Ni     Nm _N2    Nm 

.Be _i    + (1-Ö)   e       Z   -L (25) 
m! m! 
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In the second case it changes by 

{-Pe"Nl   ^J_    +(!-«••   2   ^__   } (25b) 
(m-1)! (m-1)! 

If m corresponds to a minimum probability of making an error 

both expressions must be positive.    The second expression origi- 

nates from the first one by a sign change and by replacing m by 

m-1.    If one replaces m by x and considers (25a) as a function 

of the continuously varying variable  x, then this function must 

have a zero between m-1 and m.    From this condition the cutoff 

count can be determined.    From the equation 

•f« 
x! x! 

one obtains 

x =x' + x" 

where 

In bi   * N,- N 2      1 

-In ^2 In ^2 
Nl Nl 

♦ The symbol In represents "the natural logarithm of" 
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In practice it may be possible to change the size of the test areas 

while the ratio N  /N    is fixed.    Of particular interest is the case 

where N_/N.   is close to one.    Let 

Nl 

Then 

x,= Jn_L- 
-ln Y, 

The expression x' does not depend explicitly upon N    or N    , 

only upon their ratio.    It gives a constant shift in the cutoff count 

which is independent of the size of the test areas (which is charac- 

terized by N.   or N   ).    The quantity x"   is best described in an 

intuitive manner by the expression 

x"-N 
6 = 

1 

VNi 

i. e. by the quotient of x" - N.   and N    - N   .    One finds 

6 = lnYl        V1 

This quantity is shown in Fig. 3; it is rather close to   2 • 

Of prime interest are actual values for the probability of making 

errors.    To compute these the Poisson distributions in (24) are replaced 

♦ The symbol In   represents 'the natural logarithm of" 
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by the corresponding normal distributions, and the sums by integrals, 

(the admissibility of this approximation is shown in Appendix II). One 

then finds 

-(x+£-N!)2 -(x4-N2)2 

m -2      ______ 
1 /      e       2Nl dx+U-ß) -=___  J        e       2N2       dx 

Pe = P "Tf^Tj m-i ^/*2—J^ 

Introducing in the first integral 

u= !____ 

and in the second integral 

u =      2 

one obtains 

P°"ST; <,C1""rdot<1-»C,'f2- 
1 1 

where  Uj = x"  N + 5 ( y  -1)N 

I I 11 

U2 = X'Y1'
2

N1"   
2
-(1-5)(Y-1)Y-

2
NI

? 
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The values for these integrals in terms of the upper limit can be 

found in tables.    Some examples are given in Figs. 4 through 12. 

N2 
In the examples v. = ■«"" = *• *»  1. 5, and 2. 0.    For ß the values 

1       Wj 

0.1,  0. 5, and 0. 9 have been chosen.    The value of N.   varies from 

50 to 1000.    The probability of making an error should be compared 

with (1-ß) which indicates in how many of the cases a signal is 

present.    As ß  is reduced this ratio becomes rather high although 

the probability of making an error is reduced. 

7.    A Comparison of Two Techniques of Assigning a Light Density 

to a Single Area of Lesser Intensity than the Surroundings 

Assume now that we look at a given area, a portion of the photo- 

graphic plate,  which we shall designate as the "test area".    The 

number of grains which we count is n.    We want to decide whether 

this test area corresponds to an expected number N    or to some 

alternative expected number N  ,   N   > N.   (without specifying what 

N2  is). 

Two different strategies for making this decision will be com- 

pared:   We choose a number  r, r>l.    In Strategy 1, we count the 

number of grains in the test area.    If it is below rN.   we consider 

this area as belonging to N   .    In Strategy 2,  the test area is sub- 

divided into smaller areas (for the sake of argument, into nine sub- 

areas, let us say).    Let N1 = N /9 .    We choose another number 

r\  r'>l.    Then we determine for each of the smaller areas whether 

39 



the count is smaller than r'N' . To the original test area we then 

assign the count N, if more than half of the subareas have a count 

smaller than r'N'. 

Several questions immediately arise: 

(1) How shall we choose  r and r1 ? 

(2) Which strategy is superior ? 

(3) How much better quantitatively is the superior method ? 

Intuitively one might consider Strategy 1 (using the whole area) 

as superior; however Strategy 2 (by subareas) may recommend itself 

for practical reasons.    The object of this section is to determine 

quantitatively r, r'  and the probabilities of error in either case. 

As stated in Section 6 (cf p. 35), there are two possibilities for 

making a wrong decision: 

(1) misjudging the test area as not belonging to N    when it 

actually does belong to N.   (This is called   "Type I error"); 

(2) misjudging the test area as belonging to N    when it actually 

belongs to some other number  N  , N?  different from N 

(This is called "Type II error" ).    In this section N    is 

greater than N. . 

For a number  N   (or equivalently,  N1 ) and a fixed value of 

r(orr')  one can calculate the probability of making a wrong decision of 

Type 1 for each of the strategies.    The probability of making a wrong 

decision of Type 2 is then a function of N    for each of the strategies. 
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Intuitively one can see that the closer N    is to N.   the greater is 

the probability of making a wrong decision. 

Consider Strategy 1 (whole area method).    We assume that the 

energy density of the incoming light is constant over the test area. 

To fix the argument let us temporarily assume that the test area has 

an expected value of N .    Under Strategy 1 we will decide that the test 

area does not belong to N    if the number of grains counted is greater 

than rN..    Let  P be the probability that we misjudge the test area 

(with expected value N ) as not belonging to N  , using   Strategy 1. 

Then 

-Nl« (N,)n 

P =  e       l 2 1 
[rNx + l]   — 

where the brackets indicate "largest integer in" . 

Then 

(x-Nx)2 

P«    -=L^     r     e~   lir     dx  for Nj.5 
\{2^Nl     rN l 

Let     u = 
x-Nx 

»Ml 

Then   P is approximately given by 

u/2 i .oo        2. 

P = T=    /""   r-    du = JT Je-U/2     du 
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Column 4 of Table 1 gives values for   P   corresponding to 

(r-l)^/,Ny = 0(.1)1.2. 

Now consider Strategy 2 (subarea method).    If the expected 

number of grains in the test area is  N   , then the expected 

number of grains in each subarea is Ni   where N' = N./9, and 

the probability of finding n grains in any subarea is given by a 

Poisson distribution with X  = N' .    Under Strategy 2 we will decide 

that a subarea does not belong to N1   if the number of grains counted 

is greater than r'N' .    Let p    be the probability that we misjudge 
X s 

a subarea (with expected value N' ) as not belonging to N' .    The 

subscript s denotes the subarea method. 

Then 

-N'i    -     wf p   = e 2  1 
8 [r'N'j+1]    n! 

-   (x-N'/ 
dx    for N«   > 5 Ä    /TT7T     /        e            dx    f°r N' ^^2T^N\     r,N, 2NJ 1 

T      ♦ X"N Let    u = 
>Jw 

Then 

i 2/ 1 f °° » "  u '2 
Ps ■ TW    J _?^        L      du NISW (r,-l)^/Ny 

In the case    r1 =r, Column 2 of Table I gives values of p    for s 
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(r-1) »JW = 0(.1)1.2. 

Further, we will decide that the original test area does not 

belong to N    if more than half of the subareas have a count 

greater than r'N' .    Let P    be the probability (using the subarea 
X s 

method) that we misjudge the test area (with expected value N. ) 

as not belonging to N   .    Since the number of grains counted in 

each subarea is Independent of that for any other subarea, this 

probability is a sum of binomial terms, viz: 

Ps = Ps + <!> A <UPs)+ <1>*1 <1-PS>2+<93>P3 (1-PS)3 

9      5 4 

9 
where p    is the probability that all nine subareas with expected 

3 

value N'   are misjudged as not belonging to N* ; 

9      8 
(  i ) P    (1_P )   is the probability that eight subareas are mis- x        s s 

judged as not belonging to N'   {and one   subarea is correctly 

judged as belonging to N'); 

9     5 4 
( 4)p   (1-P )    is the probability that five subareas are mis- 

judged as belonging to N1   (and the other four subareas are correctly 

judged as belonging to Nl). 

There are several possible ways to obtain P    once  p    is known. 
s s 

One is to interpolate between values given in a table such as the 
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Tables of the Cumulative Binomial Probability Distribution (Harvard 

University, Cambridge University Press,   1955).    Another possibility 

is to interpolate in a table such as Tables of the Incomplete Beta- 

function Ratio (edited by Karl Pearson, Biometrika Office, University 

College, London 1934) since it can be shown (see Kendall [1], p. 120) 

that 

P=I     (5,5) = 1-1 (5,5) 
8      Pa ^Ps 

where I   (p, q) is the incomplete Beta-function ratio. However,  here 

it was more convenient to calculate P   directly from p   with the use 
s s 

of an E-101 Burroughs electronic computer.    The results are given 

in Table I.    For example, when r'=r, Column 3 of Tabl.. I gives 

values of P   corresponding to (r-l)VN' = 0 (0. 1)1.2. 
s 

The values of P and p    can be obtained by using a table such as 

Tables of Probability Functions, Volume II (Mathematical Tables 

Projects, National Bureau of Standards, 1942). 

For the case that  r' =r,  the last column of Table I compares 

the Type I error probability of Strategy 1 (whole area method) with 

that of Strategy 2 (subarea method) in the form of a ratio,  P/P . 
s 

Strategy 1 gives lower error probabilities for all values listed; the 

difference is more pronounced if the Type I error probability is low 

(50% error means no judgement at all).    Let r = 1. 05 .    This would 
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correspond to a case where we want to discriminate between two 

light densities which differ by 10% and where we lay the cut off 

grain count into the middle.    Let N' = 100, which corresponds to 

900 points in the larger square; then (r-1) *^N' = .5 and the proba- 

bility of making a Type I error is 0. 1096 with Strategy 2 versus 

.066= with Strategy 1. 

Thus far we have discussed only probabilities of wrong decisions 

of Type I for the two strategies (see pag? 41).    Consider now the wrong 

decisions of Type II for the two strategies, i. e.  misjudging the test area 

with expected value N , N   >N , as belonging to N . 

For Strategy 1 (whole area method), we now consider the test area 

to have an expected value N , where N- = y  N  y   > 1.    Under Strategy 1 

we will decide that a subarea belongs to N    if the number of grains 

counted is less than rN .    Let Q be the probability that we misjudge the 

test area (with expected value N ) as belonging to N.. 

Then 

N,   [rNi]    (N2) 
Q=e" 2          

0 n! 

n 

I rN 
1 

N/TJ?N,   -* 

(*-N2> 
2N2       dx for N2>5 

Let u = 
x-N2 
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Then Q -   -—   J          2 (5) 
<*= •" ^     .- /2   du 

where N   = v,N. 

For Strategy 2, a subarea has an expected number of grains N* , 

where N' = y.N./9, and the probability of finding n grains in any sub- 

area is a Poisson distribution with   X. =N'.    Under Strategy 2 we will 

decide that a subarea belongs to N*   if the number of grains counted 

is less than r'Nl .    Let q   be the probability that we misjudge a sub- 

area with expected value N'    as belonging to N1'. 

Then 

V«-N'[r-N-]    lsif 

0 n! 

n    m i rr'N'i   (X"NU or % 1 j        1 2 
N/2TTN1   "*      e       2N' dx        for N'>5 

2 '"2 

X-N; 
Let u = 

^2 

Then 

q    *   4*   fUle"^   <1U=-TU-   j'U2    -U2
/2 m qs      TO.i     e   2 ^2T.«     e du tb) 

r'jN'j-N^ (r'-yj^ 
where u, =    ■==—    ,    u   =  —  

1 N/U? 2 W^ 

Furthermore, we will decide that the original test area belongs to N1 , 

if more than half of the subareas have a count less than  r'N'.    Let 
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Q    be the probability (using the subarea method) that we misjudge 
s 

the test area (with expected value N ) as belonging to N.. 

Then, this probability is again ~ sum of binomial terms: 

v %+<!> % <»-«.>+(2
9» "I "V+<!» % <u".)3 

9     5 4 

9 
where q    is the probability that all nine subareas with expected 

s 

value N'   are misjudged as belonging to N'; 

9     8 (.) q   (1-q ) is the probability that eight subareas with expected 
X       s s 

value N'   are misjudged as belonging to N*   (and one subarea is 

correctly judged as not belonging to N1); 

9     5 4 
(   ) q  (1-q )    is the probability that five subareas are misjudged as 

*     s s 

belonging to N' (and four subareas are correctly judged as not 

belonging to N',). 

One again has the relationship: 

Q    =1     (5,5) = 1 - I     (5,5) 
s       q q ns ^s 

where I  (p, q) is the incomplete Beta-function ratio. 

We now have the necessary formulas to enable us to compare the 

effectiveness of the two methods for deciding whether the light density 
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of the test area is N .    To make the discussion more explicit let us 

fix the value of y    at v. = 1. 1.    We set the probabilities of errors of 

Type I, P and P , at some common small positive value (less than one). 

The values .10, .05, and .01 are used here.    Then we solve for the 

corresponding values (r-l)^N'    and (r'-lJo/N' . (For a given value of 

N  , we can then find the appropriate r and r1.    Values of *- and r* 

are given in Tables 11(a) and 11(b), respectively, for P=P =.10, .05, .01, 

with values of N    ranging from 5 to 1000 for r\ 

With these values of r and r1, and a value of Y., we then calculate 

the probabilities of making Type II errors, Q and Q , for the two methods 
9 

(using the above formulas).    Values of Q and Q   are listed in Table III 

for P = P =.10, .05, .01, with value8 of y.   ranging from  1.1 to 2.0 
S X 

and values of N    ranging from 50 to  1000. 

Note that Q is always less than Q   for these values of a.    This 

evidence tells us that Strategy 1 using the whole area is the better 

method. 

As an illustration of a use of Tables Ha and b and Table III, 

consider  y   = 1. 1.    This corresponds to the case where the back- 

ground light intensity is 10% darker.    If we set r = 1. 05 (i. e. , we 

lay the cutoff grain count for the whole-area method in the middle) 

and P = . 05 then the table for  r  yields N  = 1000.    And the corre- 

sponding value of r'  (the cutoff grain count for the subarea method) 
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would be   1. 06 for  P   = . 05.    Thus, if the probability of Type I error 
s 

is set at . 05 for both methods, the probability of making Type II 

error is . 1840 for Strategy 2 as compared with . 0740 for Strategy 1. 

One can proceed further, using the formulas for P and Q (for 

the whole area method), for example, in the following manner: 

Set P and Q at pre -assigned small values.    Then one 

obtains a relationship between y    and N. . 

For the case P= Q = .05 one has: 

(r- l)VrT =1.64485 

and 

"Yl    N/N"= -1.64485 

Eliminating r from the above two equations and solving for y]   one 

obtains 

...    1.64485 .2 

Yl = (1+   ^ST* 

Figure  13 gives the graph of N   vs. YI   using the above equation. 

N    as plotted corresponds to the minimum expected number of grains 

for the test area which is required such that neither of the probabilities 

of Type I and Type II errors exceeds . 05 (for the whole area method). 

For example, consider y. =2. 0.    This corresponds to the situation 
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where the surroundings are twice as dark as the test area.    The 

graph yields 16 as the minimum required value for the expected 

number of grains in the test area.    The values of y.   correspond- 

ing to various values of N    from 5 to 1000 is given in the table 

below. 

Nl *1 

5 3.012 

10 2.311 

20 1.871 

30 1.691 

40 1.588 

50 1.519 

100 1.356 

200 1.246 

500 1.153 

000 1.107 

Another possible application of the above formula for  P is the 

determination of a 100(1 -P)% confidence lower limit for N..    This 

can be obtained by a plot of rN. vs N.   corresponding to a pre- 

assigned value of P.    Then for a given value of n, the observed 

number of grains    (taken on the rN   axis),one obtains LM , a lower 
1 

100(1-P)% confidence limit for N    (taken on the  Nj  axis.)   Figure 

14 gives the graph of L      vs n for P= . 05 (95% confidence).    To 
1 

illustrate the use of such a graph suppose that 10 points are counted 
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in the test area, i.e.   n=10.    For P = .05, the corresponding value 

for LM    is 6.   Hence a lower 95% confidence limit for the expected 
Nl 

number of grains in the test area is 6.    In layman's language, this 

means that if we count 10 points in the test area we can expect (with 

a 95% chance of being right in the long run) the average number of 

grains in the test area to be greater than or equal to 6. 

If so desired,  one may obtain upper 100(1 -P)% confidence limits 

for N    by considering   y   < 1, and using a technique analogous to 

that described above in this section. 

8.    Assigning a Light Density to a Single Area when Its Surroundings 

Contain Both Lesser and Greater Intensities 

As in Section 7, let the number of grains which we count in the 

test area be n.    We wish to decide whther this test area corresponds to 

an expected number N.   or to an alternative number N? (without speci- 

fying N  ).    However, now the only restriction on N_  is that it is 

different from N1 . 

The two strategies stated in Section 7 with suitable modifications 

may again be compared.    Choose two numbers  r.,  r    with r.<l,r  >1. 

In Strategy 1 (using the whole area) we count the number of grains in 

the test area.    If it is greater than r,N    and less than r N    we con- 

sider this area as belonging to N..    Otherwise,  we decide that the 

test area does not belong to N .    For Strategy 2,  suppose the test area 

is subdivided into nine subareas again.    Choose two numbers  r',  r' 

51 



with r' < 1, r' > 1.    Then we determine for each of the subareas 

whether the count is between r'N  /9 and r' N./9.    To the origi- 

nal test area we then assign the count N    if more than half of the 

subareas have a count between ri N. /9 and rl N. /9.    One now 11 L    1 

has four numbers to choose:  r., r  , r', r* . 

As in Section 7, it will be seen that Strategy 1 (using the whole 

area) is superior to Strategy 2.    We follow the same development 

as given in Section 7 and obtain formulas for the Type I errors P, P 
s 

and the Type II errors Q.Q   . 

Thus if P is the probability, using Strategy 1, that we misjudge 

the test area (with expected value N ) as not belonging to N , then 

[riNJ 
P=  .-«l\ S      w\       i      wl 

n = 0        n!       n=[r N +1]    n! 

«J21TNJ.«,       e        2N] ^2M{     r   • 2N <ix 

1 (r  -1)^    u2 

Z 1- -=■   /   ' e"  2   du        for N    »5 

It can be shown that good choices; for pairs of values of r  , r 

are ones which yield symmetrical limits in the above integration,  i.e. 

suchthat (r.-l) = -(r  -1).    We will consider only symmetrical 

52 



limits here 

(r2-l)^Nl 

Thus PS   l'TZT   'o     e-f-2    du 

Table IV gives values of r.  and r    (for various values of N.) such 

that   P = . 10, . 05,  .01. 

Now if Q is the probability, using Strategy 1, that we misjudge 

the test area (with expected value N?) as belonging to N., then 

[r^+1] n! 

n„     1             ,r?-Nl JX"N2)2 !        Jrz-Vl^Nl        2 or Q~^T2 
J
rN

e  -W" *<=s ["^TT-Vdu 
11 v 

(r1-y1)^N1 

'.'/here N    = y   N     ,     y    >0,   and N   > 5 

Substituting for  r     in terms of r    [using the symmetrical relation 

(r   -1)  =- (r  -1) ] we obtain 

(r2-l)N/N"1     _     (Y!-!)^ 

Q   "^h   S       "T" ^1 e ■ V   du     forYN>5 
-(r2_l)N/N1     _     (yl-[)slW[ 

N/YY N/77" 

♦Note that  y,   may be less than or greater than one,   since N2  may be 

greater than or less than N^  for this case. 
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As before,   P    is the probability,  using Strategy 2, that we 

misjudge the test area (with expected value N  ) as not belonging 

to N..    By analogy to the argument used in the previous section, 

we obtain the following formula for this case: 

S      Ps 

where  I   (p, q)  is the incomplete Beta-function ratio 

(r^-l)NTNy 

and      p    «   1 - -r-   /-        e'^1 du for N'> 5 
s N/2TT    0 ? i 

As before,   p    is the probability that we misjudge a subarea (with 
s 

expected value N' ) as not belonging to N' . 

Finally, if Q    is the probability,  using Strategy 2, that we mis- 

judge the test area (with expected value N ) as belonging to N., then 

Qc =1     (5,5) 
S ^o 

where  I   (5, 5) is the incomplete Beta function ratio 
x 

and q    - ±=   /      ^ •     2    du.4-.   /   ^ 1       » 
s        N/2ir .  ^Zlr e     2     du 

^ -vTy N/V7 
1 

with N   = Y   N    and N, > 5 
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As before,   q    is the probability that we misjudge a subarea (with 
8 

expected value N' ) as belonging to Nl . 

Proceeding as we did in Section 7, we set P and P  (the Type I 

errors for the two methods) at some common value.    Again the values 

.10, .05, and .01  are used here.    Then we obtain the corresponding 

values of (r,-l) 'JW.   and (r' -1)»/N\   using the formulas for P and P 
L 1 L 1 S 

above.    For a given value of N., we can then find the appropriate r? 

and r' .    Furthermore, we can obtain the appropriate r.   and r*   using 

the symmetry relations. 

Values of r  , r   are given in Table IV(a) and values of r', r'   are 

given in Table IV(b) for  P=P =.10,  .05,  .01 with values of N,   ranging 
s 1 

from  5 to  1000 for (r  , r  ) and from 50 to 1000 for (r',  r'). 

For given values of r and r\ and a value of y   ,  we can calculate 

Q and Q    (the probabilities of Type II errors for the two methods), 
s 

These are given in Table  V for  P = P =.10,  .05,  .01  with values of y. 

ranging from  0.5 to 2. 0 and values of N    ranging from  50 to 1000. 

As in the previous section, an examination of Table V reveals that 

Q  is always less than Q   for the values considered.    This evidence 

tells us that Strategy 1 (using the whole area) is, as expected, the better 

method.    For example,  consider y   =0.9.    This corresponds to the case 

where the test area is   10% lighter than the background light intensity. 

If we set r     = .94, r   = 1. 06 and P = .05 then N   = 1000.    The corre- 

sponding values of r',  r1 (for  P   =.05) are  r' =.89 and r' = 1. 11.    Thus, 

if the probability of Type I error is set at  .05 for both methods, the 
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probability of making Type II error is .10 for the whole area method 

as contrasted with .57 for the subarea method. 

Again, one can set P and Q at preassigned small values and 

obtain a relationship between y .   and N..    For the case  P= Q = .05 

this expression is different from that obtained in Section 7. 

Thus, when P = Q = .05 one has: 

(r2-l )^N   = 1.95996 

V^i   .       ~ .       + 
Also  ——-^N    ~ - 1.64485   for   Yl > 1 

and    r  ~ L 64485   for  V, < 1 

Eliminating r_,  from these equations and solving for  y.   we obtain 

y1=2\^1[c1sgn(y1-lj + ^1] + C2+c2sgn(y1-l)^4N/N1[c1sgri(y1-l)+NfN1]+ 
2 

C2 

2Nj 

where c    =  1.95996 

+ 
c   = 1.64485 

for  y >0 

Figure 15 gives the graph of N. vs y.   corresponding to the above equa- 

tion.    As in the previous section this value of N   (for a given value of y.) 

is the minimum expected number of grains for the test area which is 
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required such that neither of the probabilities of Type I and Type II 

errors exceeds .05 (for the whole area method).    The values of YI 

corresponding to various values of N    from  5 to 1000 is given in the 

table below. 

Yl Yi 
"l <Y!>D (Yl<l) 

5 3. 190 .0198* 

10 

20 

2.431 

1.952 

. 1674* 
+ 

. 3455 

30 1.756 .4424 

40 1.643 .5052 

50 1.569 .5503 

100 1.390 .6694 

200 1.270 .7600 

500 1.167 .8447 

1000 1. 117 .8890 

As an example, the graph in Figure 15 yields N   = 18 for  y   = .31  and 

2. 1 .    Corresponding values of N    for these values of N    are respec- 

tively  5. 6 and 37. 8.    Thus if it is desired to distinguish between the 

test area and surrounding areas containing either   0. 31  times as many 

grains per area (on the average) as the test area,  or 2. 1 times as many 

grains per area (on the average) as the test area,  then the minimum 

required number of grains in the test area (on the average) is 18 if 

neither of the probabilities,  P and Q,  of Type I and Type II errors is to 

exceed .05.    As another example of the use of Figure 5,  suppose it is 

♦These figures are not accurate to four places since N2 < 5 for these cases 
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desired to distinguish between the test area and surrounding areas 

containing either  0. 5 times as many grains per area or 2. 0 times 

as many grains per area as the test area.    Then y   = 0. 5 yields 

N   = 40 and v   =2. 0 yields N   = 18 in the graph.    The larger of the 

two values for N., namely 40, then is the minimum required number 

of grains in the test area if neither of the probabilities, P and Q, of 

Type I and Type II errors is to exceed .05. 

To obtain   100(1-P)% confidence intervals for N , plot r N , 

r N    versus N.   for a pre-as signed value of P.    Then for a given 

value of n (on the r N  , r N    axis) one obtains   100(1-P)% lower and 

upper confidence limits for  N,, L.T   and   U.T   (on the N, axis), from this 
1       N. N. 1 

graph.   Figure   16 gives the graphs of n versus (L     , U..) for P=.10 

.05 .01.    For example,  suppose that  10 points are counted in the test 

area.    Thus n = 10.    For P = .05, the corresponding values for LM    and 
1 

tLj    are  7 and 19 respectively.    This means that if we count 10 points 

in the test area we can expect (with a 95% chance of being right in the 

long run) the average number of grains in the test area to be between 

7 and 19. 

Conclusion 

This report analyzes procedures for the evaluation of strongly 

enlarged photographs by electronic scanning techniques.    The enlarge- 

ment is so great that the grain <- ructure of the photograph limits the 

accuracy of the evaluation.    Two sources of uncertainty are present 
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in this process: (1) The quantity to be determined for a certain point 

of the photograph (in many cases the local energy density of the elec- 

tromagnetic waves) must be approximated by an integral over an area 

containing this point; (2) In the determination of this integral an uncer- 

tainty occurs because of the randomness in the grain distribution.    To 

reduce the first uncertainty the test area should be taken small; to 

reduce the second one the test area must be taken large. 

Regarding the second source of errors it is shown how the variance 

of the results can be expressed by a integral containing the light density 

and a weight function.    By a suitable choice of the weight function the 

variance is minimized.    This procedure is illustrated in several 

examples.    Included is the problem of scanning for special patterns in 

the light density.    The uncertainty mentioned under (1) is connected 

with the size of the test area and the properties of the photograph.    In 

principle the combined variance due to the two sources of error can be 

minimized. 

Further investigations are concerned with the discrimination between 

two known light densities and a special stepwise procedure in evaluating 

the light density of the test area. 

Formulae for the confidence limits on the true grain count are given 

for different cases.    The confidence limits depend naturally upon the 

average number of grains occurring in the test area.    (If several photo- 

graphs of the same object exist, the number of points in a given area are 

added).    For moderate accuracy requirements (5% to 10% uncertainty) a 

lower limit is given by 1000 grains. 
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APPENDIX I 

pnn   \A    AMn v DERIVATION OF FORMULAS FOR  M^ AND V 

Uniform Distribution of Grains in an Area 

The statistical theory given in this appendix is not self-contained. 

For the convenience of the reader,    references have been made to one 

book only, "The Advanced Theory of Statistics,  Vol.   1" by M. G. 

Kendall, [1]. 

Let us assume that a constant number of grains, N, are distri- 

buted with uniform probability in an area y.    Further, assume that 

grains arising in some subarea Aw of y are statistically independent 

phenomena.    One may proceed by raising the following simple question: 

If one counts u grains in an area Au what are the limits of error on 

this number  u? 

Since the production of grains occurs with uniform probability, 

it follows that 

Au 
P = — (Al) 

is the probability that a grain is found in Aw, provided that we know 

that it is in y. 

Let X represent the number of grains counted in Au.    It 

will vary according to the particular photograph.*   Since p is a 

constant for an area of size Aw   in y it follows that the probability 

that X is equal to a number u (written as  P   (u)), is given by a 

♦Statisticians refer to it as a "random variable." ([1] page 173) 
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binomial distribution 

PY(u)= CN  pU(l-p)N"U u = 0,l...N (A2) 
A U 

For a discussion of the binomial distribution see [1] page 

116.    In general, for our problem N will be very large and 

p« 1.    Let  X= N    represent the average number of grains 

expected in Au>.    If N-*«o  and A<i)-*0 in such a manner that X 

is a constant less than 5,   Pv(u)  approaches a Poisson distribu- 

tion with mean  X ;  i. e. 

-X    u 
Px(u)=     —p (A3) 

It is well known that for the Poisson distribution the mean 

and the variance are both equal to X . For a discussion of this 

distribution see [l] p.   120. 

At this point, it is worthwhile to introduce the notion of the 

"characteristic function"  <)>    (t)  which is uniquely associated with 

P   (u).    The introduction of ^..(t) facilitates greatly the deriva- 

tion of formulas for  M„ and V     (see page 4 of this report for 

definitions of M     and V   ).     <J>v(t)  is defined by 

4>v(t) =      S     eitU P   (u) (A4) 
x u = o x 
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4>  (t) is known in statistics as the '^characteristic function of PY(u) 
X X 

(corresponding to the random variable X).    See [1] page 90 for 

further discussion on this subject.    Using (A3) and (A4) we obtain 

80                   \                \    oo     i \   it.u .       .    it ,    IJ.\        ~        ltu    -A..U        -\    z|     ( Xe   ) -X      *• e 4>   (t) =    S     e      e X    =e        S    v -'   = e       e (A5 
x u = 0 "ITT" u = 0      u! 

- e 

Now consider  y as being subdivided into a finely divided 

grid of squares where each square has the same area Au.    Label 

the squares of the grid as   Aw   . . Aw. .. Aw    (Fig.   17). 

We now consider a random variable Y 

Y=    S    9.X. (A6) 
i = 1   *   1 

where  X. = number of grains counted in Aw. 

8. = weight assigned to the points in Aw. . 

It is assumed that X. ... X are statistically independent 

of one another. The corresponding characteristic function of Y 

is obtained as follows: 

First one finds 

it A- 

♦ex(t».     !.«<WF^M1«     '•" (AT, 
°;Aj u.=0 l 
ii i 
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c™"^rw- .T.^ ...'.,  . li -  ■..■J,i„..-.nij ■   ■       I I  I   ■■ 

= *    P(u) 
i=l » 

<t>   (t) = 2   ... • S    e        11 n n n 
Y       u=0       u =0 Pv(   S     6. u. ) 

1 n i = lxl 

• ? T       itO.u. ... +9 u ) n = S    ....  2    e        11 nnw   P(u.) 
u =0        u =0 1=1 x 

1 n 

,itun 

(A9) 

= AoelteiUlp<ui) 2     eit92U2P(uJ...   S     e—nptu ) ul~u x u2=0 u =0 n 

n 
= *   <b (t) see[l]p242 

(A 7) and (A9) yield 

n      \(eit9i-l).    XZ  (eit6i-l) ♦yW'.'.e = ei=l (A10) 
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The X.'s are mutually independent.    Hence for a fixed set of 

values u., ... u    of X, ... X    respectively we have: 
1 n 1 n r ' 

u 
P

V(S   6.U.) = P(u.,u_ u ) 
i=i11 1    * n (A8) . 

See [1] page 21. 

Hence 



^"T "-"    ■""-  ■ ■— 

(it)r 

If we take log <j>v(t) and expand it in terms involving   —- 

,r 
then the coefficient of (it) /r!   is called the r-th cumulant, 

denoted by K   .    One has 
r 

n    .   it8; 
log«j)v(t)=  X S   (e     *-l) 

Y i=l 

n    ,00     (it8i)  ,      co n r  (it)
r 

= x z    s   —^   = s   x s     e.)r mi— 
i=lr=l     r! r = l     i = 1     i'        r! 

Hence 

K = x 2  er (All) 
r        i = 1   i 

It can be shown,   see [1] page 60-63, that K    is the mean M    of Y 

and that K,  is the variance  V    of Y. 
2 y 

Hence M_= X.Z. 8. 
Y        i=l    1 

(A12) 

vY = x s ef , 
Y     i = i x 

where X =N «^— (A 13) 

Now introduce rectangular coordinates (x, y) and let Aw-O 

Then 8.= 8(x, y) and <|>   (t) becomes 
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.._  ...-•.,. . __ _. 

4»Y<t) = exp {-^-.§:iAUi(e
itei-l)}-eXp{ ^//[eit8(x'y)-l]dxdy}     (A14) 

assuming that the double integral exists. 

From this one obtains 

log4.(t)^//t.lt9,X'y1-l]dxdy 

= N;/-     [it9^y»rdxdy 

This yields 

» Y r=1 

= 2 ütLr[£//er;x.y)dxdy] 
r = l    r!       Y y 

(A 15) 

K   =   -  ;/9r(x,y)dxdy 
r      Y   Y 

(A 16) 

Thus 

M   = £//9(x,y)dxdy 
y    »v 

(A 17) 

VY= - //92(x,y)dxdy 
Y   v 

(A 18) 
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r.3Esr- 

General Case 

It has been assumed in the text that the grains arise by a random 

process in such a manner that the probability that a grain is produced 

in a given area is proportional to the light flux across that area.    On 

the basis of this assumption, it is natural to make the following defi- 

nition for p, where p is the probability of a grain in  Aw.  given that 

the grain is in y.    Define p as: 

// p(x,y)dxdy 
A<i>i 

p=—  
j/p(x,y)dxdy 
V 

where  p{x, y) is the density of the light flux. 

Then,  since N =k//p(x, y) dxdy by Equation 1 
V 

(A19) 

P = —// p (x, y) dxdy (A20) 
Ah)- 

Note that when p(x,y) is a constant and Au. has area Aw, 

p =  , and this reduces to the case discussed in Section 1. 
Y 

We shall assume that the region y has been subdivided by some 

suitable method into subdivisions Au>.   such that p, as defined in 

(A19)i  is the same for any Aw.  thus produced.    Then the discussion 

in Section 1 can be applied again.    Here,   X =Np= k // p (x, y)dxdy is 
Awj 

the average number of grains expected in Aw..    By definition this is 

a constant for any i. 

66 



~T-."^M       ..■■.   '.'. .——- 
—  

One obtains in a manner similar to that given in Section 1, 

log 4>Y (t)='k     Z    [ // p(x,y)dxdy][ elt9i-l] 
i = 1 Aw. 

or 

K   =k   S    [   // p(x,y)dxdy]ef 
i = 1 Au- 

(A21) 

If one considers 8. as a discontinuous function of x and y which 
l ' 

assumes in each region Au. the value 0. defined above, one can 

write the last expression 

K   =k//p(x,y)ef(x,y)dxdy 

If AWj-*•(), 8.(x,y) tends to a function 9(x,y), i.e. 

[e.(x.y) -9(x,y)] = 0 

Then 

K   =k// p(x,y)^(x,y)dxdy 

Hence 

My = k // p (x, y) 6 (x, y) dxdy 

V   =k//p(x.y)e2(x>y)dxdy 
Y 

REFERENCE: 

1.   Kendall,  M. G. , The Advanced Theory of Statistics, 

Vol.1,  1948, London, Charles Griffin and Company, Limited. 
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APPENDIX II 

COMPARISON OF POISSON DISTRIBUTION AND NORMAL DISTRIBUTION 

The assumption that the grains of the photograph arise in a 

random fashion and that the creation of a new grain can be considered 

as an event independent of the creation of all previous grains leads to 

a Poisson distribution.    To be specific if the average number of grains 

to be found in a certain test area is N then the probability of finding 

in such a test area n grains is given by 

-N  N11 

P(n) = e W ~ (A24) 

For large values of n this expression can be approximated by a 

normal distribution.    It is obtained if one expresses   n! by means 

of Stirling's formula and then carries out certain simplifications, 

using the assumption that the number "n"  differs from the average 

value N by only a small amount.    One thus obtains p , the proba- 

bility density of finding n grains in a given area of size  dn( if the 

expected number is N) as the normal law: 

"/   \ I - (n-N+i)2 ,A,K. 
p(n) = ^TN   e   ~  (A25) 

In Figs.   18-23 the expressions (A24) and (A25) are plotted for 

N= 10 (10) 60.    One recognizer that the normal distribution gives 

a good approximation for N as low as 10 (In fact it is fairly good for 
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n 

N as low as 5).    Thus it appears to be justified if one takes the 

normal distribution as approximation for the Poisson distribution 

whenever such an approximation is needed. 
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Table I 

Values of P and P    for the case when r' = r   ( y» > 1) 
S X 

(r-D-sTN? P/P 
1 ^s s 8 

0 . 5000 .5000 .5000 1.000 

0.1 . 4602 .4028 .3821 .949 

0.2 . 4207 . 3113 .2743 .881 

0.3 . 3821 .2301 . 1841 .800 

0.4 . 3446 . 1628 . 1151 .707 

0.5 . 3085 .1097 .0668 .609 

0.6 . 2743 .0704 .0359 .510 

0.7 . 2420 .0429 .0179 .416 

0.8 . 2119 .0250 .0082 .328 

0.9 . 1841 .0138 .0035 .251 

1.0 . 1587 .0072 .0014 .187 

1.1 . 1357 .0036 .0005 .134 

1.2 . 1151 .0017 .0002 .094 
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T able 11(a) 
■ 

Values of r for Y, > 1 ■ 

Nl 
P = P =.10 

s 
P = P =.05 

s 
P = P -.01 

s 
■■ 

5 1.573 1.736 2.040 

10 1.405 1.520 1.736 

20 1.287 1.368 1.520 

30 1.234 1.300 1.425 

40 1.203 1.260 1.368 

50 1. 181 1.233 1.329 • 
100 1. 128 1. 164 1.233 . 

200 1.091 1. 116 1. 164 - 
500 1.057 1.074 1.104 

I 

1000 1.041 1.052 1.074 \ 

Table H(b) 

Values of r' for Y,*1 

Nl 
P=P =.10 

s 
P = P =.05 

s 
P=P =. 01 

s 

50 1.221 1.284 1.403 

100 1. 156 1.201 1.285 

200 1. Ill 1. 142 1.202 

500 1.070 1.090 1. 128 

1000 1.049 1.064 1.090 
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Table III 

Values of Q and Q   for v.M s 1 

P = P ,10 

Nl = 
50 V 100 Nl = 200 Nl = 

500 V 1000 

h Q 
8 

Q Q 
s 

Q Q 
s 

Q Q 
8 

Q Q8 
Q 

1.1 .7488 .7081 .6706 .6058 .5469 .4497 .2998 .1814 . 1061 .0365 

1.2 .5449 .4518 .3723 .2560 . 1722 .0790 .0151 .0018 .0002 .0000 

1.3 .3445 .2307 . 1512 .0659 .0275 .0047 .0001 .0000 .0000 .0000 

1.5 .0938 .0329 .0110 .0012 .0001 .0000 .0000 .0000 .0000 .0000 

2.0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

P = ] P =.05 
s 

Nl = 
50 Nl = 

100 Nl = 
200 Nl = 

500 Nl = 
1000 

Yl Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q 

1.1 .8458 .8144 .7852 .7307 .6795 .5870 .4300 .2865 . 1840 .0740 

1.2 .6724 .5834 .5032 .3729 .2702 . 1400 .0331 .0049 .0007 .0000 

1.3 .4682 . 3380 .2384 . 1173 .0546 .0114 .0004 .0000 .0000 .0000 

1.5 . 1538 .0613 .02 31 .0031 .0004 .0000 .0000 .0000 .0000 .0000 

2.0 .0018 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

P = P =.01 
8 

V 50 V 100 Nl = 
200 V 500 V 1000 

Yl Q 
s Q Q 

s 
Q Q 

s 
Q Q 

8 Q Q 
8 

Q 

1. 1 .9528 .9387 .92 57 .8970 .8692 .8078 .6847 .5343 .4039 .2127 

1.2 .8588 .7975 .7380 .6171 .5068 . 32 34 . 1127 .0251 .0049 .0001 

1.3 .7002 .5714 .4573 .2773 . 1586 

.0025 

.0464 .0029 .0001 .0000 .0000 

1.5 .3234 . 1617 .0755 .0145 .0001 .0000 .0000 .0000 

2.0 .0075 .0004 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
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Table IV(a) 

1 and r2 Values of r,   and r« for y  / 1 

P = P =.10 P = P =.05 P = P =.01 
S                                                          8 S 

Nl                    rl        r2 ri f2 rl           r2 

5                   .264    1.736 .123 1.877 -.152     2.152 

10                   .480    1.520 .380 1.620 .185     1.815 

20                  .632    1.368 .562 1.438 .424     1.576 

30                   .700    1.300 .642 1.358 .530     1.470 

rl r2 

.264 1.736 

.480 1.520 

.632 1.368 

.700 1.300 

.740 1.260 

.767 1.233 

.836 1.164 

.884 1. 116 

.926 1.074 

.948 1.052 

rl r2 

. 123 1.877 

.380 1.620 

.562 1.438 

.642 1.358 

.690 1.310 

.723 1.277 

.804 1.196 

.861 1.139 

.912 1.088 

.938 1.062 

500 .926    1.074 .912    1.088 .885     1. 115 

1000 .948    1.052 .938    1.062 .919     1.081 

Table IV(b) 

Values of r'   and r*   for y   ^1 

P = P =.10 
s 

P = P =.05 
s 

P = P =.01 
s 

Nl r'l            '2 
r'             r' 

1               2 
r'             r' 

1              2 

50 .561 1.439 .513 1.487 .419 1.581 

100 .690 1.310 .656 1.344 .589 1.411 

200 .781 1.219 .757 1.243 .710 1.290 

500 .861 1.139 .846 1. 154 .816 1. 184 

1000 .902 1.098 .891 1.109 .870 1. 130 

--. 

40 .740 1.260 .690 1.310 .593 1.407 

50 .767 1.233 .723 1.277 .636 1.364 

100 .836 1.164 .804 1.196 .742 1.258 

200 .884 1.116 .861 1.139 .818 1.182 

f 
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Table V 

Values of Q and Q    for  v, / 1 s '1 
P = P   = .10 

s 

Nl = 
50 V 100 Nl = 

200 Nl = 
500 N =1000 

*1 Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q 

0.5 .3060 .0037 .0142 .0000 .0000 .0000 

0.6 .7474 .191$ .3982 .0193 .0526 .0001 .0000 .0000 

0.7 .7992 .2845 .5218 .0526 . 1297 .0010 .0002 .0000 .0000 .0000 

0.8 .8876 .6014 .7945 .3456 .5667 .0929 . 1020 .0008 .0017 .0000 

0.9 .9127 .8320 .8954 .7490 .8561 .5954 .7108 .2666 .4456 .0549 

1.1 .8508 .8019 .8316 .7248 .7904 .5853 .6534 .2864 .4247 .0740 

1.2 .7574 .5808 .6706 .3725 .4945 .1399 . 1366 .0049 .0078 .0000 

1.3 .6205 .3375 .4383 . 1173 . 1779 .0114 .0047 .0000 .0000 .0000 

1.5 .3047 .0613 .0860 .0031 .0038 .0000 .0000 .0000 

2.0 .0089 .0001 .0000 .0000 .0000 .0000 

P = P 
s 

= .05 

Nl = 50 Nl 
= 100 Nl 

= 200 Nl: 
= 500 N =1000 

Yl Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q Q 
s 

Q 

0.5 .4552 .0129 .0357 .0000 .0000 .0000 
0.6 .8479 . 3134 .5361 .0463 . 1003 .0004 .0000 

0.7 .8847 .4235 .6555 . 1069 .2140 .0032 .0008 .0000 .0000 

0.8 .9427 .7290 .8791 .4821 .6916 
+ 

.9215 

. 1658 .1697 .0025 .0043 .0000 

0.9 .9579 .9042 .9472 .8433 .7173 .8127 . 3855 .5707 .102$ 

1.1 .9173 .8784 .9037 .8176 .8732 .6979 .7611 .3961 .5427 . 1258 

1.2 .8471 .6898 .7749 .4853 .6113 .2139 .2051 .0109 .0153 .0000 

1.3 .7297 .4436 . 5527 . 1808 .2563 .0226 .0093 .0000 .0000 

1.5 .4047 .0991 . 1322 .006$ .0074 .0000 .0000 

2.0 .0156 .0002 .0001 .0000 .0000 
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Table V (continued) 

N1 = 50 N =100 N =200 Nj = 500 N = 1000 

Yl Q     Q 
8 

Q     Q 
8 

Q     Q 
8 

Q     Q 
8 

Q8    Q 

0.5 .7460 .0874 . 1504 .0003 .0003 .0000 .0000 

0.6 .9573 .6056 .7792 . 1768 .2708 .0044 .0004 .0000 

0.7 .9703 .7065 .8574 .3061 .4462 .02 32 .0056 .0000 .0000 

0.8 .9882 .9030 .9665 .7401 .8724 .3888 . 3674 .0170 .0214 .0000 

0.9 .9922 .9753 .9893 .9516 .9812 .8896 .9354 .6399 .7829 .2682 

1.1 .9792 .9617 .9740 .9332 .9614 .8659 .9037 .6270 .7491 .2880 

1.2 .9489 .8554 .9104 .7004 .8002 .4088 .3816 .0417 .0483 .0003 

1.3 .8817 .6549 .7501 .3549 .4433 .0719 .0307 .0001 .0001 .0000 

1.5 .6050 .2166 .2612 .0239 .0234 .0001 .0000 .0000 .0000 

2.0 .0403 .0007 .0004 .0000 .0000 .0000 

7 
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APPENDIX in 

I.    Computational procedure for finding r,  given   a an assigned 

value of P(x). 

2 

P(x) = —£=-   L e     2 du 
■^ 

x 

where  x = (r-lJ'v'NT 

Now set P(x) equal to   a, i.e. 

2 

P(X)=T?2T C6"^" du=° (a) 

Given a, the problem is:   compute P (x).    To solve this problem on 

Burroughs E101 Electrodata Electronic Computer, we proceed in the 

following manner.    We replace P(x) in (a) by the approximate formula 

P(*> " [ . .Z .3'       .4 .5        .6   '" <b» c + a, x + a. x   + a„ x  +a. x  +a_ x  + a,x 12 3 4 5 6 

where  x = 
7.0710678119 

1 
c = 1.0442737826 =  ifc)__ 

a = .03682270091 

a = . 11038499229 

a = . 12101231517 

a, = .00992153425 
4 

a_ = .09025371127 
5 

a6 = .07026624580 

for (x) in the range: - 7.0710678119 <; x < 7.0710678119 
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" 

The formula (b) will yield 6-place accuracy.    Differentiating (a) 

we obtain: 

1 
u 

P'(x) = --=   e     2 
sZrt 

(c) 

Now, 
*/27 

= .398994 22811 

Let x /2  = x 

then 

-x - -2      -3±      -4 -5±      -6 -10 
e       = art-a   x+a,x-a,x  + a.x   - a. x   + a,x   ....+a  _x (d) 

(J     1 2 3 4 3 o 1U 

where 

ao = 1.0 

al = -1.0 

a2 = 
.5 

aV: . 166666 66667 

a4 = 
.416666 66667 

a5=.008333 33333 

a, =.001388 888889 

a    =.000198 41270 

a. =.000024 80159 
o 

a    =.0000027   5573 

a    =.0000002   7557 

(d)   will yield  10-place accuracy if the following identity is used: 

x 
e       = (e    n  )       ,   where   —   < . 5 for any x >0 

n ' 
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-2 -2 

(For example, if it is desired to compute e     , first compute e   * 

then raise to the fourth power). 

Now we can compute  P(x) and P'(x) 

Let f (x) = P(x) - o 

f'(x) = P'(x) 

Iteration formula for x: 

n+l"   n      f«(x)      "   n' P'(x) 
(e) 

Take an arbitrary value for x.    We calculate  P(x)and P'(x) using 

(b), (c).    Substituting these into (e) give us a second value for x. 

Repeat iteration by repeated application of (e).    The process converges 

to the desired value of x.    If this value is y, we set: 

y= (r-1) N/TTJ 

or,   r= (Viijl+l 

Then, for a given n., r is computed 

II.    Computational procedure for finding r\  given  a   ,    an assigned 

value of P    where  P    is given by the formula on page 44.    As before, 
s s 

set   P   = a.       The incomplete beta-function I   (p, q) can be represented 
S X 

by the following series: 

5432 
I   (5. 5) = x   [ax   -ax  +a.x   -a   x + a ] (f) 
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where   a   = 70 
4 

a = 315 

a2 = 540 

a = 420 

aQ = 126 

This function also represents  P   from formula given on Page 45. 
s 

Now    f(x) = a- I   (5,5) 

f'(x) = -630 x4(l-x)4 

To find x, we use the following iteration formula: 

I   ' : 

X n 
+ 1 = x   - n 

f(x) 
f'(x) 

= x + n 

a- I 
x«5' 5) 

4., 4, 
630 x  (1-x ) 

r 

Using the solution of this iteration,call it y, we set 

2 

v-i 
U 

e      2 du 

whe re      t = (r'-lJ-v/N' 

and the problem now reduces to solving for t.    But this is exactly 

the same type of problem as in (I ),    Using the method given in (I) 

we compute t.    Then for a given N.   we compute r' from the 

relationship u = (T'-IJN/N^ . 

III.    Computational procedure for finding Q given YI » N. and r. 

r was obtained using Computational Procedure I from page 46.   Q is 

given by: 
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Q s -="   /     e      2     du 
v2w     _ oo 

where  u    = JV      1 

^77 

To compute Q,  assign a value to YI (sav»  Yi  = *• 0 and to N   . 

Using the value of r obtained,  we calculate u   .    With this value of 

u.   we use formula (b) and calculate  P(x) , where 

,=      u> 
7.0710678119 

This value of P(x) is the desired Q. 

IV.    Computational Procedure for finding Q  ,  given Yi'N-.r1.    The 

value of r1 was obtained using Computation Procedure II.   Now from page 47? 

2 
1        u2   _Ji_ 

q    = -—.   /    e     2      du 

where u, .   ",-Yl>^i 
2 3^ 

Assign a value to v. (say y. = !• M and to N  .    Using the value of 

r'  obtained,  we calculate  u .    With this value of u   we use formula 

(b) and calculate  P(x)  where  x 
7.0710678119 

This value of P(x) is q   .    In formula (f) set x equal to the value of 
8 

q    which we have obtained, and calculate I   (5, 5).    This value is the 
^s x 

desired value of Q   . 
s 
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V.    Given the function: 

2 
u 

*(x) =   ±=-  /Xe" 2     du 
s/2ir     -x 

* (x) can be approximated to six decimal places by the following 

series in the range -7.0710678119 < x 2= 7.0710678119 

1 ,16 
•w =l -1 :—3—is—:*—Is——] 

a„ + a, x + a, x  +a„ x   +a. x +a_ x   + a,x 0      12 3 4 5 o 

where x" = 
7.0710678119 

at = .03526 15392 

a = .105705 03075 
Cm 

a = . 115881 7900 

a . - .009500 89375 
4 

a_ = .086427 2500 
D 

a6 = .067287 1875 
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-.mean vaJut 

Fig. 1      PROBABILITY DENSITY CURVE 

Fig. 2      SCANNING FOR A GIVEN PATTERN 

THE RECTANGLE REPRESENTS THE TEST AREA A, 

THE SHADED PART IS THE PATTERN THAT IS TO BE 

FOUND.    ITS AREA IS   y   A. 
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4        6     8   10 20 40      60 100 200 400    600      1000 

n (OBSERVED NUMBER OF GRAINS IN TEST AREA) 

Fig. 14   LOWER   95% CONFIDENCE LIMIT FOR  N    (Y   >1) 
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Fig. 17      SUBDIVISION OF THE AREA  v 
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